At 11:00 A.M. on September 7, 2001, more than 1 million British school children jumped up and down for one minute. The curriculum focus of the “Giant Jump” was on earthquakes, but it was integrated with many other topics, such as exercise, geography, cooperation, testing hypotheses, and setting world records. Children built their own seismographs, which registered local effects. (a) Find the mechanical energy released in the experiment. Assume that 1 050 000 children of average mass 36.0 kg jump twelve times each, raising their centers of mass by 25.0 cm each time and briefly resting between one jump and the next. The free-fall acceleration in Britain is 9.81 m/s2. (b) Most of the energy is converted very rapidly into internal energy within the bodies of the children and the floors of the school buildings. Of the energy that propagates into the ground, most produces high-frequency “micro tremor” vibrations that are rapidly damped and cannot travel far. Assume that 0.01% of the energy is carried away by a long-range seismic wave. The magnitude of an earthquake on the Richter scale is given by M = log E ─ 4.8 / 1.5 where E is the seismic wave energy in joules. According to this model, what is the magnitude of the demonstration quake? (It did not register above background noise overseas or on the seismograph of the Wolverton Seismic Vault, Hampshire.)