Tag Archives: LG

Test Results for LG INR18650-MJ1 3,500mAh 18650 Li-ion Battery

Recently, there was news of LG’s first lithium nickel cobalt aluminum oxide chemistry cells. Panasonic has long led the market for 18650 Lithium Ion batteries with their own cells based on that chemistry. Their NCR18650B at 3,350 mAh capacity has been in wide availability for the last year, and some of their 3,600mAh NCR18650G’s have also popped up.

We now have reports of the highest capacity 3,500mAh INR18650-MJ1 version of LG’s new cells in the wild. If the real-world examples match LG’s claims, Panasonic will have some serious competition.

194009wqt7itir7g7i5tmu

Lucky for all of us, cooldiy_cn managed to get his hands on two of these cells and ran them through a series of tests which he posted on the Chinese Chongdiantou forum.

The weights of his two examples were 46.60g and 46.65g.

LG INR18650-MJ1 0.5C Discharge Curve

Above, you can see the test results with a 0.2C/0.7A discharge from 4.2v to 2.5v, which delivered 3,481 & 3,496 mAh.

INR18650-MJ1 3.5A discharge

At 1C/3.5A usable capacity is only diminished by about 1% and usable capacity remains good at higher discharge rates.

LG INR18650-MJ1 5A Discharge Test

At 5A, usable capacity is 3,390 and 3,393 mAh, or ~97% that delivered at 0.2C/0.7A.

LG INR18650-MJ1 10A Discharge

10A discharge is 3,252 and 3,310 mAh, or ~95% the usable capacity at a 0.2C/0.7A discharge.

He also tested the internal resistance of his two cells, and found that they were about 28mOhm (caveat that this can vary depending on method of measurement).

All in all, this is a promising development. I look forward to being able to buy these in new-old-stock and lightly used laptop packs, in a few years.

New LG INR18650 MH1 (LGDBM1865) 3,200 mAh 4.2v!

I was taking advantage of Google Translate to skim through recent posts on a Chinese battery/power bank/charger blog. They have a lot of posts on new high-capacity cells from various chinese battery manufacturers, but post on a new cell from LG caught my eye.

I haven’t been keeping a on the latest developments in lithium ion batteries because I’ve been focusing on recycling cells from old laptop packs, and I have my hands full just keeping up with all the variants that were in new packs in 3-6 years ago. Still, the INR18650 MH1 (LGDBM1865) grabbed my interest because its 3,200 mAh capacity and 10A (>3c) discharge rate struck me as unusual.

The capacity itself isn’t revolutionary, Panasonic has had a 3,400 mAh cell on the market for a while, and Samsung and LG have both had 3,200 mAh cells on the market for over a year. The existing Samsung and LG cells have a maximum discharge rate of 1.5C (1.5x rated capacity), or ~4.6A, and the Panasonic seems to allow 2C/7.8A  discharges, wheras this cell is rated at 10A, or more than 3C.

It has another interesting characteristic, a 4.2v charge termination voltage, instead of the 4.35v of many existing high capacity cells. Many lithium ion chargers, and most cheap charging ICs/modules have a fixed 4.2v charge termination voltage. Charging high-capacity 4.35v cells to 4.2v doesn’t harm them, and can actually extend their lifetime, but leaves 10-15% of their capacity unused. On the other hand, when the INR18650 MH1 is charged in a 4.2v charger, all its capacity is utilized.

Of course, the 4.2v voltage also brings a tradeoff. The nominal voltage is 3.67v, vs the 3.75v of LG’s 4.35v 3,200 mAh battery. This results in a somewhat lower power capacity of 11.7Wh vs 12Wh, or 2.5%, but that’s much less than the 10-15% lost when undercharging a 4.35v cell.

I’m not sure how I missed it, but it looks like user cooldiy_cn managed to get his(?) hands on some and has posted test results for the INR18650MH1.

Some added details, and highlights of the tests:

  • In addition to this 3,200mAh cell, LG is bringing out a family of INR cells with a range of capacities, including:
    • 2,800 mAh: INR18650MG1
    • 2,900 mAh: INR18650M
    • 3,500! mAh: INR18650MJ1
  • The INR18650MH1 specifies a 1C fast-charge rate
  • Measured internal resistance of the tested samplesL 34.2 and 36.2 mOhms.
  • 0.2C/0.62A discharge tests at 3,217 and 3,214 mAh
    • Cooldiy_cn claims the discharge curve is very similar to the Panasonic NCR cells.
  • 1C discharge tests yield 3,109 mAh and 3085 mAh for the tested cells.
  • 10A discharge test of one cell yields 3,253 mAh. It maintains voltage well enough to deliver 10.39Wh.
    • The NCR18650 BD 10A can deliver 10A, though it is out of spec. When it does, it only delivers 2,831 mAh, and the voltage sags so much that the power delivered is only 8.856 Wh.

If you want to see the discharge graphs, check out cooldiy_cn’s original post.

More info:

 

 

ASUS AL32-1005 11.25V 5600mAh 63Wh battery pack teardown

I picked this ASUS AL32-1005 11.25V 5600mAh 63Wh up at RePC for $1. Based on the nameplate pack voltage, it was one of only a handful that used newer 3.7v lithium ion cells out of the hundred or more packs they had.

IMG_6047

IMG_6049

Labels for the positive and negative contacts were, helpfully, molded into the plastic.

IMG_6452

Removing the plastic sticker exposed part of the cells, but to get them out, I had to rip the plastic case apart, with some pliers and elbow grease. Pack voltage is reasonable, so its unlikely that any of the cells are completely shot, but at the point, I don’t know how much use they’ve suffered. I’m leaving the circuit intact for now so I can try and read out the smart battery information so I can see if there is any correlation between that and the results of testing the individual cells.

The cells themselves look like they are made by LG. They are all labelled LGDC118650. All the onces I can see also have I1245xxxxxx, MED45DxC1, where the ‘x’ represents a position with a number or letter that varies from cell to cell.

From what I can tell, the manufacturer is LG, and they are 3.7V, 2,800mAh cells, which is pretty much what I expected based on the specs printed on the outside. One of the only english-language pages I found mentioning these cells suggested they had a charge termination voltage of 4.35v, but I’ve found nothing else to corroborate that.

The battery management chip is labeled bq 20Z45, 95K, CP7L, which looks like the TI bq20z45, an all-in-one battery management chip.